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ABSTRACT 

Background 

Air pollutant exposure is one of the major risk factors for aggravation of respiratory diseases. We 

investigated whether exposure to air pollution and accumulated black carbon particles in blood were 

associated with COVID-19 disease severity, including the risk for intensive care and duration of 

hospitalisation.  

Methods 

From May 2020 until March 2021, 328 hospitalised COVID-19 patients (29% at intensive care) were 

recruited from 2 hospitals in Belgium. Daily exposure levels (from 2016 to 2019) for particulate matter 

(PM2.5 and PM10), nitrogen dioxide (NO2) and black carbon were modelled using a high-resolution 

spatiotemporal model. Blood black carbon particles (internal exposure to nano-sized particles) were 

quantified using pulsed laser illumination. Primary clinical parameters and outcomes included duration 

of hospitalisation, and risk of intensive care.  

Results 

Independent of potential confounders, an interquartile range (IQR) increase in exposure in the week 

before admission was associated with increased duration of hospitalisation (PM2.5:+4.22 (95%CI:0.74-

7.69) days;,NO2:+4.33 (1.30-7.37) days); Similar effects were observed for long-term NO2 and BC 

exposure on hospitalisation duration. These effect-sizes for an IQR increase in air pollution on 

hospitalisation duration were equivalent to the effect of a 10-year increase in age on duration of 

hospitalisation. Furthermore, for an IQR higher blood black carbon load, the odds ratios for intensive 

care hospitalisation was 1.36 (1.11-1.70).  

Conclusions 

In hospitalised COVID-19 patients, higher pre-admission ambient air pollution and blood black carbon 

levels predicted adverse outcomes. Our findings imply that air pollution exposure influences on COVID-

19 severity and therefor the burden on medical care systems during the COVID-19 pandemic. 

INTRODUCTION 

The coronavirus disease 2019 (COVID-19) pandemic presented a challenge for health care burden 

worldwide. Patients with COVID-19 who are admitted to hospital are usually stratified for risk on the 

basis of age,[1] obesity,[1, 2] or with underlying diseases such as diabetes mellitus[3] and 

cardiovascular disease.[4] The burden of morbidity and mortality of COVID-19 has also varied across 

geographical location which supports a link between environmental factors and severe acute 



respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and COVID-19 susceptibility, severity 

and outcome.[5] 

Ambient air pollution constitutes a serious risk factor not only for the emergence of respiratory and/or 

viral infections, but also for the development of reduced pulmonary function and/or aggravation of 

existing pulmonary diseases.[6, 7] During the COVID-19 pandemic, air pollution concentrations were 

lower than before the pandemic,[8] due to the positive impact of several lockdown related effects such 

as less traffic and reduced industrial activities on air quality. During the pandemic, the attributable 

relative risk factor of black carbon exposure levels on human health were significantly lower than 

before the pandemic.[8] Nonetheless, emerging data from epidemiological studies also suggest that 

both genetics but also air pollution may modulate the risk of disease by increasing patient susceptibility 

to infection, including COVID-19 Experimental data supports an important role of the ACE2 receptor, 

which COVID-19 viruses use to infiltrate target cells, in the pathophysiology of infection.[9] Indeed, 

studies showed that susceptibility to COVID-19 infection was correlated with ACE2 expression in cell 

lines.[6, 7, 10–15] Therefore, it is hypothesised that higher ACE2 protein level might be associated with 

a higher local viral load, and long-term exposure to PM2.5 has been shown to increase the expression 

of angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine type 2 (TMPRSS2), 

proteins critical to SARS-CoV-2 entry into mice and host cells.[16, 17] 

Pathophysiologically, the inhalation of elevated concentrations of air pollution results in inflammation 

processes of mucus membranes in the pulmonary tract and is a factor that could further influence the 

process of a COVID-19-infection related lung disease. But the earliest epidemiologic studies p assessing 

the relationship between air pollution and COVID-19 incidence have been subject to methodologic 

limitations that may introduce bias and limit causal inference.[5, 18–20] More recently, several studies 

have demonstrated associations between long-term air pollution and hospitalisation risk, ICU 

admission risk, and mortality using patient level data.[21–27] Currently, important indicators related 

not only disease severity, but also pressure on health care systems such has duration of hospitalisation 

have not been investigated in cohort studies.  

Recently, we showed that short-term exposure to particulate and gaseous air pollution prior to hospital 

admission is an important and modifiable risk factor that prolongs the duration of ventilation in non-

COVID critically ill patients.[28] Furthermore, recent evidence demonstrates that air pollution may be 

associated with COVID-19 disease severity. We therefore investigated whether long-term but also 

short-term exposure to air pollution prior to hospital admission explains the variable clinical and thus 

individualised course observed in hospitalised COVID-19 patients by examining duration of 

hospitalisation and risk of ICU admission, while also using a novel individual marker of BC exposure. 



Additionally, we aimed to estimate potential healthcare costs associated with air pollution exposure 

in this context by making a health-economical translation based on our findings. 

METHODS 

Study design and participants 

In total, we included 328 hospitalised patients with PCR-confirmed COVID-19. 283 were recruited at 

time of admission to the hospital VITAZ (Sint-Niklaas, Flanders, Belgium): including 233 hospitalised at 

the general COVID-19 ward and 50 patients who required intensive care soon after admission. 

Additionally within the same catchment area, 45 intensive care patients from the Antwerp University 

Hospital were recruited, who had been admitted to the ICU within 24 hours after hospital admission. 

Patients were recruited between May 2020 and March 2021. To be eligible, patients had to be ≥ 18 

years old, and tested positive for COVID-19 by PCR, and not included in other ongoing clinical 

intervention studies, and not moved during the last 3 years. The participants enrolled in our study were 

not vaccinated at the time of the study. Based on information in the clinical records of the patients and 

the available information about dominant SARS-CoV-2 virus variant spread in Belgium and PCR tests, 

patients infected between May 2020 and February 13th 2021 were affected by the (original) Wuhan 

variant of the virus, while the majority of the patients recruited from February 14th 2021 until March 

2021 were infected by the alfa variant of the virus. 

Five patients (1.5%) living outside of Belgium had no information on residential exposure to air 

pollutants and were therefore excluded from analyses involving modelled air pollution exposures. 

Written informed consent was obtained from all participants or their closest relatives and ethical 

approval was given by the ethical committee of VITAZ hospital, Antwerp University hospital 

(EC20/25/323) and Hasselt University (Registration number: B2020115000006). 

Demographic and clinical characteristics, such as ethnicity, sex, age, body mass index, smoking status 

(active, ex or never) and blood pressure on admission at the hospital were obtained from the medical 

records. We obtained via questionnaire information on education and occupation. 

Educational attainment was assessed as the highest educational level successfully completed using the 

International Standard Classification of Education. Patients educational level was coded as low, middle, 

and high. Occupation was assessed using the International Standard Classification of Occupations 

(ISCO). We chose not to ask participants about personal income because, based on experience in other 

population-based studies in Belgium, this question is often considered a violation of privacy.[29, 30] 

Besides the aforementioned individual SES indicators, we determined neighbourhood income (median 



annual household income), as this might reflect contextual associations and the geographical 

dispersion of potential risk factors.[31] More details can be found in supplemental information.  

Blood and urine samples were collected at admission to the ward. Subsequently, the values of more 

general biochemical and haematological measurements were determined at the time of admission 

(including C-reactive protein (CRP), absolute white blood cell count (WBC) and number of monocytes, 

eosinophils, lymphocytes, neutrophils, platelets). Primary clinical outcomes used in this study included 

the duration of hospitalisation (defined as the total number of days that patients remained 

hospitalised from the date of hospitalisation until the date of hospital discharge), admission to 

intensive care. 

Secondary endpoints included vasopressor usage (noradrenaline, adrenaline or vasopressin, as well as 

the total duration in days), necessity for invasive ventilation, and blood oxygen saturation (determined 

in the blood sample at the time of admission to the ward). The arterial partial pressure of oxygen to 

the fraction of inspired oxygen (PaO2/FiO2) on admission was recorded, a validated score to measure 

the impairment of oxygen uptake in severely impaired lungs. 

We also collected data on parameters of comorbidity (Charlson Comorbidity Index[32] and the early 

warning score,[33–35] a scoring system which assists with the detection of changes in vital signs and 

may help to identify patients at risk for further clinical deterioration.  

Residential ambient air pollution exposure 

Daily residential exposure (μg/m3) to particulate matter with aerodynamic diameter less than 2.5 µm 

(PM2.5), less than 10 µm (PM10), black carbon (BC), and nitrogen dioxide (NO2) was estimated using a 

spatial-temporal interpolation method. Validation statistics of the model indicated that the spatial-

temporal variability was explained by 80% for PM2.5,[36] 70% for PM10, 74% for BC,[37] and 78% for 

NO2.[36] The model was further validated by as study that showed that urinary black carbon load was 

associated with annual residential modelled concentration.[38] We refer to the supplementary 

information for more details on the exposure modelling. 

Blood black carbon load 

The internal black carbon load was quantified in whole blood using a specific and sensitive detection 

technique based on white light generation of carbonaceous particles under femtosecond pulsed 

illumination as previously reported.[39] More details can be found in the supplemental information. 

Statistical analyses and translation into health care costs 

Statistical analyses were performed using R version 4.0.2 (R Core Tea, Vienna, Austria). The threshold 

for statistical significance was set at the 95% confidence limit (α = 5%). We used multiple linear 



regression models to assess the association between predefined outcomes and recent, long-term 

ambient air pollution as well as the internal black carbon load. We determined Pearson correlation 

coefficients between the different short-term and long-term air pollution exposures (Table S1). 

Outcomes were divided into primary and secondary outcomes. Primary outcomes included the 

duration of hospitalisation, and risk of ICU admission. Secondary outcomes included early warning 

scores, PaO2/FiO2 ratio, blood oxygen saturation at the time of admission  

Distributed lag models (DLM, using R package “dlnm” version 2.4.7) were used to estimate day-specific 

associations between short-term exposure to air pollutants in up to 30 days before admission. More 

details about the DLM models can be found in the supplemental information. 

Binomial logistic regression models were used to estimate the Odds Ratios (OR) for admission to the 

intensive care unit (ICU), risk of ventilation and vasopressor usage.  

All models were adjusted for the following previously reported risk factors and potential confounders: 

age, sex, body-mass index (BMI), education, neighbourhood median income, smoking status, average 

temperature at the day of admission, the Charlson comorbidity index, and estimated virus variant 

(based on dominant virus variant in Belgium at the time of admission). Additionally, we used 

Generalised Additive Models (GAM) to account for date of admission using a smoothed term for this 

covariate. Using this smoothed term for date of admission indicated better fitted to the data than 

adjusting for date of admission as either linear or quadratic terms. Finally, a sensitivity analysis was 

conducted to exclude a hospital related bias by dropping the smallest patient cohort (patients from 

University Hospital Antwerp) from the main analysis. 

 RESULTS 

Study population 

From May 2020 to March 2021, 328 participants were recruited (Table 1). The patients were on 

average aged 65.7 years (range: 20.1 to 98.3), included 148 (43.6%) women, 179 (56.6 %) patients with 

congestive heart failure, 73 (22.3%) with diabetes, and 63 (19.2%) participants with cancer. The mean 

early-warning score at admission was 3.10 (+-2.2).Most patients obtained a secondary education 

degree (n = 179, 54.8%), whereas 92 participants (28.0%) obtained a primary education degree or no 

degree at all and 57 participants (17.4%) obtained a college or university degree. A large proportion of 

the patients were of Caucasian ethnicity (n = 281, 85.7%). Patients with north-African ethnicity 

represented the second largest proportion (n = 32, 9.8%). Most patients never smoked (n = 172, 

52.4%), whereas 9 patients (2.7%) were active smokers.  



The distribution of the average residential exposure to PM2.5, PM10, BC and NO2 (2 days and 7 days 

before admission, and average chronic exposure from 2016 to 2019) is described in Table 2. The 

measured black carbon particles in blood were significantly correlated with the modelled chronic 

exposure levels to black carbon (Spearman r = 0.48, p < 0.01, Figure S1). 

The average duration of hospitalisation was 16.9 days (Table 1). The duration of hospitalisation was 

significantly associated with several demographic variables. Patient age was the strongest determining 

demographic factor explaining the duration of hospitalisation (Table S2). While controlling for all other 

demographic and clinical variables (sex, BMI, education, median neighbourhood income, smoking 

status, Charlson comorbidity index, average temperature at admission, date of admission and 

estimated virus variant), each 10-year increase in age, the duration of hospitalisation increased by 2.36 

days (p < 0.01). Furthermore, men had a longer duration of hospitalisation on average than women 

(+3.99 days on average, p = 0.07). Date of admission was correlated with duration of stay was well (p 

< 0.01). None of the other covariates were significantly correlated with the duration of hospitalisation. 

Duration of hospitalisation 

Using distributed lag models (DLMs), we investigated day-specific differences in the duration of 

hospitalisation for increases in exposure to air pollutants 30 days before hospital admission (Figure 2). 

The DLM model identified the week before hospitalisation as the most significant recent exposure 

window (for PM2.5, PM10 and NO2 exposure) associated with the duration of hospitalisation.  

Using average exposures calculated for short-term (2 days, and 7 days before admission) and long-

term exposures, we observed that both short- and long-term exposures to PM2.5, PM10 and NO2 were 

associated with increases in the duration of hospitalisation (Table 3). On average, the duration of 

hospitalisation increased by 3 to 5 days for an interquartile range (IQR) increase in short-term exposure 

7 days before admission (PM2.5: +4.22 days; 95%CI: 0.74 to 7.69, PM10: +4.46 days; 95%CI: 1.64 to 7.28, 

NO2: +4.33 days; 95%CI: 1.30 to 7.37). 

We observed a significant moderating effect of patient gender on the association between duration of 

hospitalisation and air pollutant exposure, with the effect of long- and short-term PM2.5 and PM10 

exposures being more pronounced for men than for women (Figure 1D, p-value interactions < 0.05). 

Similarly, the effect of short-term (but not long-term) NO2 exposure was more pronounced in men (p-

value interaction = 0.01). Patient BMI and diabetes did not moderate the same associations (p-value 

interactions > 0.05). 

We used co-pollutant models to potentially identify key long-term pollutants (Table S3). We noted that 

the previously observed effects of long-term NO2 (+4.39 days, 95%CI: 1.12-6.78) and BC (+3.48 days, 



95%CI: 0.61-6.36) exposures on the duration of hospitalisation remained significant in the two-

pollutant models that included both PM10, and either NO2 or BC exposure respectively.  

We ran models mutually adjusted for long-term and short-term exposure (Table S4). For the mutually 

adjusted models, short-term exposure was defined as the average exposure 7 days before admission 

to the hospital. In the mutually adjusted models, effects for ambient PM2.5 and PM10 remained 

significant for the short-term exposure, while for long-term exposure, black carbon exposure remained 

significant in the mutually adjusted model.  

Finally, as sensitivity analysis we additionally adjusted for diabetes and last known occupation. While 

adjusting for diabetes (Table S5), we observed no notable difference in the previously reported effect 

estimates. When adjusting for occupation (Table S6), we observed non-significant trends for short-

term average PM2.5 (+3.40 days, 95%CI: -0.08 – 6.88) and NO2 (+2.31 days, 95%CI: -0.74 – 5.53) 

exposures that were significant in the main models. However, effect estimates and overall confidence 

intervals remained largely comparable.  Finally, excluding the smallest patient cohort (Antwerp 

University hospital) did not alter the aforementioned findings (Table S10). 

Risk of admission to intensive care  

The distribution of air pollution both long-term exposure to ambient particles (Figure 1A and 1B) and 

blood carbon particles differed significantly between ICU and non-ICU hospitalised patients.  

The odds of admission to intensive care was significantly associated with the blood black carbon 

particle load (Figure 1C). The odds ratio for an interquartile-range (IQR) increase (+9.27×105 particles 

per mL blood) in measured particles was 1.36 (95%CI:1.11-1.70). Long-term exposure to air pollutants 

was also associated with the odds of admission to the intensive care unit (Table 4). An IQR increase in 

long-term BC and NO2 exposure was associated with an odds ratio of 2.26 (95%CI: 1.66-3.21) and 2.54 

(95%CI: 1.81-3.70) respectively.  

In addition to the long-term exposure, we observed a significant increase in the odds of admission to 

the intensive care unit for an IQR increase in the average exposure to NO2 one week before admission 

(OR = 2.06, 95% CI:1.38 - 3.15). Sensitivity analysis revealed that excluding the patients recruited from 

Antwerp university hospital  did not alter significantly the aforementioned associations (Table S11).  

Secondary outcomes  

We observed significant associations between short-term exposure to PM2.5, PM10 and NO2, and early 

warning scores at the time of admission (Table S7). An IQR increase in average PM10 exposure 7 days 

before admission was associated with a 0.32 point increase in the early-warning score on average (p = 

0.05). The early warning score was not associated with long-term air pollutant indicators. Risk of 



ventilation was associated with short-term exposure to NO2 (OR = 2.08, 95%CI: 1.35 – 3.28, Table S7). 

In addition, long-term exposure to air pollutants was associated with the risk of ventilation (Figure 1C, 

Table 4). For an IQR increase in long-term PM10, BC and NO2 exposure, the odds ratios for the risk of 

ventilation were 1.34 (95%:1.02–1.83), 1.89 (95%CI:1.41–2.60), and 1.93 (95%CI:1.40-2.72) 

respectively.  

Regarding vasopressor use, short-term NO2 exposure was associated with higher odds for vasopressor 

usage (OR=1.97, 95%CI:1.87–2.07, Table 4). Long-term ambient air pollution was associated with 

increased odds of vasopressor usage (Figure 1C). For an IQR increase in long-term NO2 and BC 

exposure, the odds ratios were 3.16 (95%CI:2.02–5.15), and 2.88 (95%CI:1.95-4.43) respectively. 

Furthermore, an IQR increase in number of BC particles per mL blood (+9.27×105 particles) was 

associated with higher risk of vasopressor usage (OR = 1.38, 95%CI:1.05–1.78).  

Long-term BC and NO2 exposure were associated with lower PaO2/FiO2 ratios (Table S8; -30.2, 95%CI:-

41.8 to -18.6 and -35.2, 95%CI:-48.6 to -21.8 respectively). Average NO2 exposure one week before 

admission was associated with lower PaO2/FiO2 ratios as well (-26.7, 95%CI:-44.6 to -9.1). 

The odds of vasopressor usage were higher for the same increase in particles per mL blood (OR = 1.23, 

95%CI: 0.97-1.57, Table 4). Additionally, we observed a trend toward higher risk of ventilation with 

increasing black carbon load (OR = 1.19, 95%CI:0.98-1.44). 

No associations were found between air pollutant exposure and blood oxygen saturation (Table S9). 

DISCUSSION 

Inhalation of elevated concentrations of air pollutants results in inflammation processes of mucus 

membranes in the pulmonary tract and is a factor that could influence the process of SARS-cov-2-

infection. In this context, we investigated whether exposure to air pollutants (both recent and long-

term exposure as well as ambient and internal markers of exposure including blood load of black 

carbon) on disease severity and clinical outcomes in phenotypically well -characterised hospitalised 

COVID-19 patients. We observed associations between short- and long-term PM2.5, PM10, and NO2 

exposure and several clinical features during COVID-19 hospitalisation including duration of 

hospitalisation, ventilation risk, and the risk for admission to the intensive care unit. Our findings show 

that exposure to air pollutants both recent and long-term exposures at relatively low levels has a 

significant impact on disease severity and progression for COVID-19 patients. The public health and 

clinical significance of our findings should not be understated, as we showed that the effect-magnitude 

of an IQR increase in long-term air pollution (e.g. contrasting NO2 by 4.16 µg/m³) on the duration of 

hospitalisation was roughly equivalent to the effect on hospitalisation of a 10-year increase in age. The 



clinical significance of our findings is further evident from clinical interventions (with Il-6 receptor 

antagonist,[40] remdesivir,[41] and triple combination of interferon beta-1b, lopinavir-ritonavir, and 

ribavirin[42]) on account of the reduction in the number of hospitalisation days, reported to be 5–10 

days in these trials. Therefore, based on our observed effects of air pollution exposure on 

hospitalisation duration, it is clear that for relevant improvements in air quality, even at relatively low 

concentrations, health gains are in the order of 40 to 80% of the aforementioned proven novel 

therapies. These findings reinforce the existing call for action to reduce air pollution levels in order to 

limit the burden of COVID-19 and improve respiratory health worldwide.[43]Our study also confirmed 

previously identified important factors of COVID disease severity, namely patient gender. Although 

some studies noted a significant association between BMI and COVID-19 severity in hospitalised 

patients,[1, 2] others have not observed this effect.[44] In the latter study, it was suggested that the 

effect of BMI on COVID-19 susceptibility and severity may be mediated through other comorbidities 

and might be population dependent. We found that patient gender modified the association between 

short-term PM2.5 exposure and the duration of hospital, with more pronounced associations in men 

than in women. This might be explained by underlying comorbidities that have a higher prevalence in 

men. However, our results suggest that the effect-modification of gender for COVID-19 disease 

severity of hospitalised patients by air pollution cannot be explained fully by differences in 

comorbidities, since we accounted for comorbidity score. Therefore, other susceptibility or biological 

factors might be involved as well.  

Several mechanism might explain the observation of disease severity of hospitalised COVID-19 and air 

pollution.[5] First, air pollution might exacerbate comorbidities and other respiratory conditions 

associated with severe COVID-19. Second, air pollution might modify host susceptibility to infection 

and/or disease severity through immune response modification. Finally, air pollution might render the 

host defence mechanisms weakened by promoting host pathogen invasion when damaged by 

particulate invasion and causes systemic inflammation including oxidative stress,[45–49] influences 

lung epithelium integrity,[50] and could imbalance the immune system. Severe COVID-19 is associated 

with high inflammation and elevated levels of inflammatory cytokines. Exposure to ambient pollutants 

may worsen and/or sustain this inflammatory storm that is triggered by a SARS-CoV-2 infection 

including interleukins, interferons, tumour necrosis factor, colony stimulating factors, the chemokine 

family, and growth factors.[45] These inflammatory processes in the mucus membranes of the 

pulmonary tract which can result in pulmonary dysfunction, which in turn would have a negative 

impact on the disease progression of a COVID-19 infection.  

Complementary to evidence of these plausible pathophysiological mechanisms, epidemiologic data 

show an association between air quality and the incidence of COVID-19 in the population, the risk for 



hospitalisation and regional mortality.[5, 51–58] However, most studies to date, although reporting 

robust data, have some methodological shortcomings, associating group-level air pollution exposures 

with aggregate COVID-19 outcomes over a broad area, relying on COVID-19 disease incidence 

estimated from surveillance data.[5, 52–54, 56–59] or do not include short-term exposures to high 

concentrations of pollutants, such as might be experienced during a wildfire event.[58] Therefore, our 

data support the suggestion that studies investigating the relationship between air pollution and 

COVID-19 incidence could benefit significantly from personal monitoring to estimate individual-level 

air pollution exposures.[5]  

The most important limitation is the limited sample size. Therefore, it is difficult to assess to what 

extent the study participants were representative for other populations. Further studies are required 

to substantiate our current observations on hospital related outcomes as well as on the potential role 

of air pollution on long-COVID. Additionally, studies aiming to obtain more insight in the role of air 

pollution and the ACE2 receptor in COVID-19 disease progression would be beneficial.. Additionally, 

we identified the first week before hospital admission as a potentially vulnerable time period for air 

pollution exposure. In this time period, it may be the case that patients were already showing 

symptoms of COVID-19, and therefore be self-isolating at home. However, we believe the determined 

air pollution exposures reflect the indoor pollution levels relatively accurately was well. Studies have 

previously reported high correlations between indoor and outdoor air pollution, with correlation 

coefficients ranging between 0.40 and 0.79.[60–62] Furthermore, we would argue that in case most 

participants self-isolated at home in the time period before hospital admission, this would actually 

reduce potential exposure misclassification due to participants not being at home 100% of the time 

and therefore improve our modelled air pollution estimates. Nevertheless, the ambient air 

concentrations in the current study area are representative for large European areas and our study 

sample included patients with a social-economic background based on educational level which is in 

line with the distribution in the general population.  

On the other hand, we had well characterised patients, with patient level data about socio-economic 

status, age, gender, BMI, smoking status, and comorbidities for all participants, which allowed us to 

account for these potential confounding factors and avoid ecological bias. The participants enrolled in 

our study were unvaccinated and infected by the contemporary virus strains in the interval from May 

2020 to March 2021, and findings were independent of seasonality, the date of admission and 

meteorological conditions such as the average temperature at the day of admission, which further 

reduces the risk our findings were confounded by external factors that could be related to both the 

clinical outcomes and air pollution exposure. 



We took several parameters that could explain temporal patterns including date (as smoothed term), 

season of admission, dominant virus strains, and ambient temperature into account. In addition, the 

period of this study was before the start of the vaccination campaign in Belgium. For these reasons, 

we do not believe that temporal effects could have biased our studied outcomes. Further, COVID-19 

patients were always transferred to hospitals with sufficient capacity. During this study, patients were 

only discharged from the hospital if physiological parameters (including hemodynamic characteristics, 

patient mobility, and a need for oxygen support) were stable. Hospital data showed that the average 

duration of stay of COVID-19 patients was not significantly shorter during peak months of the 

pandemic than during other months in the period of this study. 

Furthermore, we used validated high-resolution spatiotemporal models to estimate air pollutant 

exposure. Additionally, we confirmed that external exposure was linked with internal exposure (blood 

carbon load). Despite the limited sample size, we observed significant and relatively large effects at 

low levels of air pollution exposure (in 2017, long term PM2.5 exposure in Flanders averaged 12.8 

µg/m³) and therefore representative for large parts of the world.  

Overall, our study in COVID-19 patients supports the concept that air pollution even at low levels is 

one of the factors that determines individualised disease severity or adverse COVID-19 outcomes in 

hospitalised covid-19 patients, with important consequences on the hospital burden and healthcare 

costs during the pandemic. Further, improvement in air quality might be in same order of magnitude 

to 50% of the effect seen by novel clinical medical interventions.[40–42]. Further studies are required 

to substantiate our current observations on hospital related outcomes as well as on the potential role 

of air pollution on long-COVID. Additionally, studies aiming to obtain more insight in the role of air 

pollution and the ACE2 receptor in COVID-19 disease progression would be beneficial.  
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Supplemental information 

Air pollution exposure 

Residential addresses of the patients were geocoded, with correction for residential address changes 

over the 3-year period. In total less than 2% participants had an address change over the last 3-years 

prior admission.. Daily residential exposure (μg/m3) to particulate matter with aerodynamic diameter 

less than 2.5 µm (PM2.5), less than 10 µm (PM10), black carbon (BC), and NO2 was estimated using a 

spatial-temporal interpolation method, which integrates the land-cover data obtained from satellite 

images (CORINE land-cover) [63] and air pollution data of fixed monitoring stations in combination 

with a dispersion [64]. The dispersion model uses the results from the interpolation method as 

background and superimposes the effect of industrial point sources and line sources from traffic to 

calculate the daily concentration at high resolution. Model performance was evaluated by leave-one-

out cross-validation and based on 34 monitoring points for PM2.5, 58 for PM10, 14 for BC, and 44 for 

NO2. Validation statistics of the model indicated that the spatial-temporal variability was explained by 

80% for PM2.5 [36], 70% for PM10, 74% for BC [37], and 78% for NO2 [36]. The model was further 

validated by as study that showed that urinary black carbon load was associated with annual residential 

modelled concentration [38]. 

For short term exposure: daily exposures up to 30 days before admission were used to model 

distributed lag models (DLMs) in order to investigate the associations with clinical outcomes. Lastly, 

chronic exposure was calculated by averaging the daily exposures over a four-year period (2016-2019). 

We did not include exposure of recent years (2020-2021) for calculating chronic exposures, due to the 

fluctuations in air pollution in comparison to the previous years as a consequence of COVID-19 

measures. Additionally, the residential distance to major roads, defined as highways and other national 

roads, was calculated, using Geographic Information System (GIS) functions with ArcGIS 10 software 

(Esri Inc., US). 

Neighbourhood median income 

Neighbourhood median income was determined using on the home address of the participants, which 

were used to assign statistical sectors, the smallest administrative entity for which statistical data are 

produced by the Belgian National Institute of Statistics. Participants lived in 197 different statistical 

sectors. The income is calculated on the basis of personal tax declarations and includes taxable 

professional income, replacement income, pensions, dividends, cadastral income and maintenance 

payments. It excludes non-taxable income, such as patients benefits and integration income. The 

reference period of the data used is the 2019 income year, i.e. the 2020 tax year. 



Blood black carbon load 

To obtain an individual measurement of exposure, the individual internal black carbon load was 

quantified in whole blood using a specific and sensitive detection technique based on white light 

generation of carbonaceous particles under femtosecond pulsed illumination as previously reported 

(6–8). All images were collected at room temperature using a Zeiss LSM880 (Carl Zeiss, Germany) 

equipped with a femtosecond pulsed laser (810 nm, 120 fs, 80 MHz, MaiTai DeepSee, Spectra-Physics, 

USA) tuned to a central wavelength of 810 nm using a Plan-Aprochromat 20x/0.8 (Carl Zeiss, Germany). 

Two-photon induced white light emission by carbonaceous particles was acquired in the non-

descanned mode after spectral separation and emission filtering using 400-410 nm and 450-650 nm 

band-pass filters. Each blood sample was vortexed and aliquoted at 100 µL per imaging chamber 

constructed by placing a glass coverslip (24x24 mm, #1.5, VWR, The Netherlands) on a microscopic 

glass slide (75x25, VWR, The Netherlands) merged with 100 µm thick double-sided tape (4959, Tesa, 

Germany). The blood-filled imaging chambers were air-sealed to prevent drying. Ten by ten tile scans 

were collected 5 µm inwards from the bottom of the imaging chamber (i.e., 170 µm thick 24x24 mm 

coverslip). The resulting tile scans had a field of view of 4250.96x4250.96 µm2 containing 100 images 

with a 5120x5120 pixel resolution and were recorded with a 1.54 µs pixel dwell time at three different 

locations in the imaging chamber. To determine the number of BC particles in the images, a peak-find 

algorithm counting connected pixels above a threshold value of 80% and 20% from the highest pixel 

intensity of the narrow second harmonic generation channel (400-410 nm) and two-photon excited 

autofluorescence channel (450-650 nm), respectively, was used. These thresholds resulted in highly 

reproducible values, which were checked manually using Fiji (ImageJ v2.0, open source software, 

http://fiji.sc/Fiji). The average amount of particles detected in the different tile scans was normalised 

to the image volume using the focal volume estimated from the point spread function of the optical 

system. Finally, the result was expressed as the number of detected BC particles per millilitre blood. 

In previous research,[65] we have shown that urinary black carbon load in children (n=289, age 9-12y) 

is related to chronic modelled BC exposure (1-year average BC). Furthermore, recently we showed that 

both BC in maternal blood (r=0.57) and cord blood (r=0.68) at delivery was reflective of modelled BC 

during the entire gestation.[39] 

Statistical analysis 

Distributed lag models (DLM, using R package “dlnm” version 2.4.7) were used to estimate day-specific 

associations between short-term exposure to air pollutants in up to 30 days before admission, which 

allows the simultaneous estimation of a (non-linear) exposure-response association and non-linear 

effects across lags, the latter termed lag-response association.[66] The exposure-response function 

was assumed to be linear and the lag structure was modelled using a natural cubic with 5 degrees of 

http://fiji/


freedom, setting the knots at equally spaced values in the original lag scale (1 to 30). The number of 

knots was 3, based on Akaike’s Information Criterion.[66] Final estimates are presented as the change 

in duration of hospitalisation for a 5 µg/m3 (PM2.5, PM10, NO2) or 0.5 µg/m3 (BC) increase in air pollutant 

exposure.  

  



Tables 

Table 1: Description of the demographic and medical study population characteristics (n = 328). 
 Mean (+- SD) Frequency (%) 

Demographic characteristics    

Age (years) 65.7 (+- 16.7)  
BMI 28.0 (+- 5.5)  
Sex   

• Male  185 (56.4%) 
Ethnicity   

• Caucasian  281 (85.7%) 
• North-African  32 (9.8%) 
• Middle-Eastern  7 (2.1%) 
• Asian  6 (1.8%) 
• Black-African  2 (0.6%) 

Education   
• Low  92 (28.0%) 
• Medium  179 (54.8%) 
• High  57 (17.4%) 

Smoking status   
• Active  9 (2.7%) 
• Ex  146 (44.5%) 
• Never  172 (52.4%) 
• Passive  1 (0.3%) 

Medical characteristics   
Blood oxygen saturation (%) 95.81 (+- 4.05)  
CRP (mg/dL) 77.34 (+- 69.10)  
PaO2/FiO2 ratio 286.23 (+- 88.80)  
Neutrophils count 5.65 (+- 3.40)  
Eosinophils count 0.05 (+- 0.26)  
Monocytes count 0.93 (+- 1.81)  
Platelets count 214.71 (+- 83.39)  
Intensive care patients  95 (29.0%) 
Patients with vasopressor usage  34 (10.4%) 
Patients requiring ventilation  78 (23.8%) 
Duration of hospitalisation (days) 16.9 (+- 19.8)  
Early warning score 3.10 (+- 2.16)  
Charlson comorbidity index   

• 0  98 (30.0%) 
• 1-2  120 (36.6%) 
• 3-4  65 (19.8%) 
• >=5  45 (13.7%) 

 
 

  



Table 2: Descriptive characteristics of the average exposure to air pollutants (µg/m3) 2 days before 

admission, and 7 days before admission, as well as long-term exposure (average exposure from 2016 – 

2019). 

Air pollutant Minimum 1st Quartile Median 3rd Quartile Maximum IQR 

PM2.5       

2 days 3.85 7.20 10.32 10.32 49.35 3.12 
7 days 3.79 8.70 11.24 16.08 30.84 7.38 
Long-term 10.26 13.20 13.42 13.76 14.24 0.56 
PM10       

2 days 8.90 13.90 17.50 29.70 63.15 15.80 
7 days 9.39 15.23 19.44 23.09 42.36 7.85 
Long-term 15.50 20.87 21.26 21.63 22.75 0.76 
BC       

2 days 0.10 0.41 1.03 46.5 294.7 46.1 
7 days 0.11 0.49 0.97 50.2 160.2 49.74 
Long-term 0.66 0.86 0.91 1.01 1.38 0.15 
NO2       

2 days 4.25 10.24 14.07 19.45 19.45 9.21 
7 days 4.03 10.97 13.65 17.13 28.47 6.16 
Long-term 10.72 15.97 17.77 20.01 30.43 4.16 

Abbreviations: IQR = interquartile range, PM: particulate matter, BC: black carbon, NO2: nitrogen 
dioxide. 

  



Table 3: Associations between average air pollutant exposure and blood black carbon load, and the 
duration of hospitalisation (n = 328). 
 

Exposure Estimate (days) 95% CI p-value 

PM2.5    

2 days +0.81  -0.05 – 1.68  0.06 
7 days +4.13  0.74 – 7.53  0.02 

Long-term +0.47  -2.05 – 2.99  0.72 

PM10    

2 days +3.63  0.24 – 7.03  0.04 
7 days +4.04  1.24 – 6.83  0.01 

Long-term +1.44   0.12 
BC    

2 days +2.91  -0.48 – 6.30  0.09 

7 days +3.62  -2.44 – 9.67  0.24 

Long-term +2.33  0.216 – 4.40  0.02 

NO2    

2 days +3.59  0.36 – 6.82  0.03  
7 days +4.54  1.53 – 7.54 <0.01 

Long term +3.21  0.83 – 5.59 0.01 

Blood BC load +0.95  -0.73 – 2.63  0.27 

Estimates were determined using linear multiple regression models and are represented for an IQR 
increase in the exposure. All models were adjusted for age, sex, BMI, education, neighbourhood median 
income, smoking status, day of admission, average temperature at the day of admission, the Charlson 
comorbidity index, and estimated virus variant. 

  



Table 4: Odds Ratios for admission to the intensive care unit, risk of ventilation and vasopressor usage in association with average air pollutant exposures and 

blood black carbon load (n = 328). 

 

Estimates were determined using binomial logistic regression models and are represented for an IQR increase in the exposure. All models were adjusted for 
age, sex, BMI, education, smoking status, day of admission, average temperature at the day of admission and the Charlson comorbidity index.  
an/N (%): 95/328 (29.0%) for intensive care admission  
bn/N (%): 78/328 (23.8%) for patients on ventilation  
cn/N (%): 34/328 (10.4%) for patients on 26asopressor use  
 

 Intensive care unit admissiona   On ventilationb  Vasopressure usec 

Air pollutant OR (95 %CI) P-value  OR (95%CI) P- value  OR (95%CI) P- value 
PM2.5         
2 days 0.96 (0.85 – 1.08) 0.51  0.97 (0.86 – 1.10) 0.68  0.90 (0.74 – 1.09) 0.28 
7 days 1.02 (0.97 – 1.06) 0.94  1.18 (0.73 – 1.90) 0.50  1.30 (0.63 – 2.69) 0.47 
Long-term 0.79 (0.57 – 1.10) 0.16  1.08 (0.75 – 1.54) 0.69  0.68 (0.43 – 1.09) 0.11 
PM10         
2 days 0.98 (0.62 – 1.55) 0.93  1.01 (0.62 – 1.65) 0.97  0.76 (0.36 – 1.58) 0.46 
7 days 1.17 (0.81 – 1.70) 0.40  1.28 (0.93 – 1.75) 0.23  1.22 (0.71 – 2.10) 0.48 
Long-term 1.26 (0.96 – 1.65) 0.09  1.39 (1.03 – 1.89) 0.03  1.42 (0.93 – 2.19) 0.11 
BC         
2 days 1.20 (0.79 – 1.84) 0.40  1.21 (0.75 – 1.95) 0.42  1.18 (0.68 – 2.05) 0.56 

7 days 0.91 (0.44 – 1.88) 0.81  0.96 (0.45 – 2.05) 0.91  1.65 (0.58 – 4.68) 0.35 
Long-term 2.30 (1.64 – 3.22) <0.01  1.96 (1.43 – 2.70) <0.01  2.58 (1.70 – 3.92) <0.01 
NO2         
2 days 1.44 (0.94 – 2.22) 0.09  1.37 (0.86 – 2.17) 0.18  1.75 (0.62 – 4.93) 0.09 
7 days 2.05 (1.34 – 3.13) <0.01  2.12 (1.35 – 3.34) <0.01  2.99 (1.58 – 5.68) <0.01 
Long-term 2.58 (1.79 – 3.71) <0.01  1.98 (1.41 – 2.79) <0.01  2.79 (1.75 – 4.45) 0.08 
Blood BC load 1.33 (1.07 – 1.65) 0.01  1.18 (0.96 – 1.45) 0.12  1.37 (1.33 – 1.41) 0.02 



Table S1: Pearson correlation coefficients between the modelled average exposures. 

 PM2.5, 
2 days 

PM10, 
2 days 

BC, 
2 days 

NO2, 
2 days 

PM2.5, 
7 days 

PM10, 
7 days 

BC, 
7 days 

NO2, 
7 days 

PM2.5, 
long-term 

PM10, 
long-term 

BC,  
long-term 

NO2, 
long-term 

PM2.5, 2 days 1.00 0.95 0.51 0.77 0.70 0.68 0.42 0.53 0.13 0.07 -0.02 -0.05 

PM10, 2 days 0.95 1.00 0.47 0.77 0.64 0.75 0.35 0.54 0.13 0.11 0.03 0.00 

BC, 2 days 0.51 0.47 1.00 0.31 0.55 0.46 0.94 0.36 0.10 0.09 0.05 0.05 

NO2, 2 days 0.77 0.77 0.31 1.00 0.42 0.49 0.21 0.64 0.23 0.26 0.23 0.22 

PM2.5, 7 days 0.70 0.64 0.55 0.42 1.00 0.90 0.53 0.69 0.19 0.16 0.07 0.03 

PM10, 7 days 0.68 0.75 0.46 0.49 0.90 1.00 0.40 0.70 0.20 0.22 0.16 0.11 

BC, 7 days 0.42 0.35 0.94 0.21 0.53 0.40 1.00 0.35 0.10 0.12 0.10 0.10 

NO2, 7 days 0.53 0.54 0.36 0.64 0.69 0.70 0.35 1.00 0.31 0.45 0.52 0.49 

PM2.5, long-term 0.13 0.13 0.10 0.23 0.19 0.20 0.10 0.31 1.00 0.86 0.43 0.38 

PM10, long-term 0.07 0.11 0.09 0.26 0.16 0.22 0.12 0.45 0.86 1.00 0.71 0.67 

BC, long-term -0.02 0.03 0.05 0.23 0.07 0.16 0.10 0.52 0.43 0.71 1.00 0.98 

NO2, long-term -0.05 0.00 0.05 0.22 0.03 0.11 0.10 0.49 0.38 0.67 0.98 1.00 

 

 



Table S2: Associations between patient characteristics and duration of hospitalisation (n = 328). 

Explanatory variable Estimate 95%CI p-value 

Age (+ 10 years) +2.36 0.82 – 3.9 <0.01 
Sex (ref = female)    

• Male +3.99 -0.38 – 8.35 0.07 
BMI (+ 1 unit) 0.14 -0.26 – 0.53-  0.50 
Education (ref = Low)    

• Medium +5.18  -13.5 – 23.9 0.59 
• High +2.95 -16.3 – 22.2 0.76 

Neighbourhood median income (+1 IQR = 6261 euro/year) -4.22 -7.27 - -1.17 <0.01 
Smoking status (ref = Active)    

• Ex 9.4  -3.19 – 2.29 0.15 
• Never 8.05  -4.78 – 2.16 0.22 
• Passive 11.54  -3.09 – 4.97 0.57 

Comorbidity index (+ 1 unit) 0.50 -0.59 – 1.60 0.36 
Average temp. (+ 1 °C) +0.48 -0.14 – 1.10 0.37 
Date of admission (Linear term)  -27.13 -42.68 - -11.60 <0.01 
Date of admission (Quadratic term) <0.01 <0.01 <0.01 

Estimates were determined using linear regression models and are represented in days of 
hospitalisation with 95%CI.  
  



Table S3: Associations between long-term air pollutant exposure and duration of hospitalisation in co-
pollutant models. 

Estimates were determined using linear multiple regression models and are represented for an IQR 
increase in the exposure. All models were adjusted for age, sex, BMI, education, neighbourhood median 
income smoking status, date of admission, average temperature at the day of admission,the Charlson 
comorbidity index and estimated virus variant.  

 

  

Co-pollutant model Exposure Estimate 95% CI p-value 

PM10 + BC 
PM10 -0.26 -2.78 – 2.26 0.84 

BC 3.48 0.61 – 6.36 0.02 

PM10 + NO2 
PM10 -0.24 -2.62 – 2.14 0.84 

NO2 4.39 1.12 – 6.78 0.01 



Table S4: Associations between air pollution exposure and duration of hospitalization, in models 
mutually adjusted for short- (average 1 week before admission) and long-term (average 2016 – 2019) 
air pollution exposure. 

Exposure Exposure window Estimate 95%CI p-value 

PM2.5 
Long-term -1.30 -3.87 – 1.26 0.32 

Short-term 4.53 1.00 – 8.05 0.01 

PM10 
Long-term 0.37 -1.50 – 2.23 0.70 

Short-term  4.36 1.49 – 7.23 <0.01 

BC 
Long-term 1.40 -0.39 – 3.79 0.02 

Short-term -3.89 -8.47 – 0.69 0.10 

NO2 
Long-term 1.92 -0.84 – 4.68 0.17 

Short-term 3.16 -0.31 – 6.63 0.08 

Estimates were determined using linear multiple regression models and are represented for an IQR 
increase in the exposure. All models were adjusted for age, sex, BMI, education, neighbourhood median 
income smoking status, date of admission, average temperature at the day of admission, the Charlson 
comorbidity index and estimated virus variant. + 

 

  



Table S5: Associations between average air pollutant exposure and blood black carbon load, and the 
duration of hospitalisation (n = 328), additionally adjusted for diabetes (yes/no). 
 

Exposure Estimate (days) 95% CI p-value 

PM2.5    

2 days 0.83 -0.04 – 1.71 0.06 
7 days 4.27 0.80 – 7.75 0.02 

Long-term -0.54 -3.10 – 2.01 0.68 

PM10    

2 days 3.70 0.29 – 7.11 0.03 
7 days 4.07 1.27 – 6.87 0.00 

Long-term 1.03 -0.82 – 2.89 0.28 
BC    

2 days 0.13 -2.69 – 2.96 0.93 

7 days -0.36 -4.57 – 3.85 0.87 

Long-term 0.24 -1.85 – 2.32 0.03 

NO2    

2 days 2.58 -0.52 – 5.67  0.10 
7 days 3.60 0.61 – 6.58 0.02 

Long term 3.08 0.65 – 5.50 0.01 

Blood BC load 0.82 -0.88 – 2.52 0.34 

Estimates were determined using linear multiple regression models and are represented for an IQR 
increase in the exposure. All models were adjusted for age, sex, BMI, education, neighbourhood median 
income, smoking status, day of admission, average temperature at the day of admission,the Charlson 
comorbidity index, estimated virus variant, and diabetes (yes/no). 

  



Table S6: Associations between average air pollutant exposure and blood black carbon load, and the 
duration of hospitalisation (n = 328), additionally adjusted last known occupation (ISCO classification). 
 

Exposure Estimate (days) 95% CI p-value 

PM2.5    

2 days 0.65 -0.22 – 1.53 0.15 
7 days 3.40 -0.08 – 6.88 0.06 

Long-term -0.71 -3.28 – 1.85 0.59 

PM10    

2 days 3.05 -0.37 – 6.47 0.08 
7 days 3.45 0.63 – 6.27 0.02 

Long-term 0.96 -1.19 – 2.59 0.47 
BC    

2 days 1.44 -2.83 – 2.28 0.99 

7 days 2.16 -4.91 – 3.56 0.76 

Long-term 1.12 -0.40 – 4.00 0.11 

NO2    

2 days 1.60 -1.49 – 4.78 0.30 
7 days 1.55 -0.74 – 5.35 0.14 

Long term 1.30 0.09 – 5.18 0.04 

Blood BC load 0.88 -1.04 – 2.41 0.44 

Estimates were determined using linear multiple regression models and are represented for an IQR 
increase in the exposure. All models were adjusted for age, sex, BMI, education, neighbourhood median 
income, smoking status, day of admission, average temperature at the day of admission, the Charlson 
comorbidity index, estimated virus variant, and last known occupation (ISCO classification). 

  



Table S7: Associations between average air pollutant exposure and the blood black carbon load, and 

the early-warning scores at the time of admission (n = 328). 

Exposure Estimate 95% CI p-value 

PM2.5    

2 days +0.02  -0.08 – 0.12 0.71 
7 days +0.32  -0.07 – 0.71 0.11 
Long-term +0.22  -0.50 – 0.06 0.13 
PM10    
2 days +0.11  -0.28 – 0.50 0.58 
7 days +0.32  0.01 – 0.64 0.05 
Long-term -0.09  -0.29 – 0.12 0.42 
BC    
2 days 0.04 -0.20 – 0.27 0.76 
7 days -0.08 -0.44 – 0.28 0.65 
Long-term -0.02  -0.25 – 0.21 0.88 
NO2    
2 days +0.12  -0.24 – 0.49 0.51 
7 days +0.22  -0.13 – 0.56 0.21 
Long-term -0.01  -0.27 – 0.25 0.94 
Blood BC load -0.11  -0.30 – 0.08 0.25 

Estimates with 95%CI were determined using linear multiple regression models and are represented for 
an IQR increase in the exposure. All models were adjusted for age, sex, BMI, education, neighbourhood 
median income, smoking status, day of admission, average temperature at the day of admission,the 
Charlson comorbidity index, and estimated virus variant.  
  



Table S8: Associations between average air pollutant exposures and blood black carbon load, and the 

PaO2/FiO2 ratio at the time of admission (n = 328).  

Exposure Estimate  95% CI p-value 

PM2.5    

2 days  4.13 -0.93 – 9.19 0.11 
7 days  11.05 -9.31 – 31.42 0.29 
Long-term  0.74 -0.17 – 1.65– 0.11 
PM10    
2 days  9.42 -10.70 – 29.53 0.36 
7 days  -0.27 -17.33 – 16.78– 0.97 
Long-term  -9.72 -20.42 – 0.97 0.08 
BC    
2 days 13.13 -3.29 – 29.24 0.12 
7 days 15.30 -6.70 – 37.29 0.24 
Long-term  -30.19 -48.61 - -21.80 <0.01 
NO2    
2 days  -17.43 -36.75 – 1.88 0.08 
7 days  -26.86 -44.64 - -9.07 <0.01 
Long-term  -8.77 -48.61 - -21.80 <0.01 
Blood BC -9.93 -20.14 – 0.29 0.06 

Estimates were determined using linear regression models and are represented for an IQR increase in 
the exposure. All models were adjusted for age, sex, BMI, education, neighbourhood median income, 
smoking status, day of admission, average temperature at the day of admission, the Charlson 
comorbidity index, and estimated virus variant.  
 

  



Table S9: Associations between average air pollutant exposures and blood black carbon load, and the 

saturation of oxygen in blood at the time of admission (n = 328). 

Exposure Estimate  95% CI p-value 

PM2.5    

2 days 0.03  0.01 – 0.05 0.80 
7 days -0.32  -1.13 – 0.49 0.44 
Long-term 0.00  -0.61 – 0.62 0.99 
PM10    
2 days 1.58  0.79 – 2.38 0.70 
7 days -0.18  -0.87 – 0.50 0.60 
Long-term -0.12  -0.59 – 0.34 0.60 
BC    
2 days 0.07  -0.64 – 0.77 0.85 
7 days 0.14  -1.06 – 1.33 0.83 
Long-term -0.21  -0.85 – 0.44 0.53 
NO2    
2 days 0.13  -0.62 – 0.88 0.73 
7 days -0.46  -1.25 – 0.34 0.26 
Long-term 0.24  -0.47 – 0.95 0.51 
Blood BC 0.20 -0.25 – 0.54 0.48 

Estimates were determined using linear regression models and are represented for an IQR increase in 
the exposure. All models were adjusted for age, sex, BMI, education, neighbourhood median income, 
smoking status, day of admission, average temperature at the day of admission, the Charlson 
comorbidity index and estimated virus variant.  

 

  



Table S10: Associations between average air pollutant exposure and blood black carbon load, and the 
duration of hospitalisation (VITAZ hospital patients only, n = 273). 
 

Exposure Estimate (days) 95% CI p-value 

PM2.5    

2 days 0.99 0.21 – 1.78 0.01 
7 days 5.66 2.48 – 8.84 <0.01 

Long-term 2.51 0.04 – 4.98 0.05 

PM10    

2 days 3.65 0.53 – 6.76 0.02 
7 days 4.05 1.39 – 6.71 <0.01 

Long-term 1.94 0.07 – 3.81 0.04 
BC    

2 days 2.52 -0.08 – 5.11 0.06 

7 days 5.07 -0.04 – 10.19 0.05 

Long-term 2.38 -0.22 – 4.98 0.07 

NO2    

2 days 2.46 -0.38 – 5.30 0.09 
7 days 5.80 2.74 – 8.87 <0.01 

Long term 2.76 -0.07 – 5.60 0.06 

Blood BC load 0.46 -1.13 – 2.05 0.58 

Estimates were determined using linear multiple regression models and are represented for an IQR 
increase in the exposure. All models were adjusted for age, sex, BMI, education, neighbourhood median 
income, smoking status, day of admission, average temperature at the day of admission,the Charlson 
comorbidity index, and estimated virus variant. 

  



 

Table S11: Odds Ratios for admission to the intensive care unit in association with average air pollutant 

exposure (VITAZ hospital patients only, n = 273)  

Estimates were determined using binomial logistic regression models and are represented for an IQR 

increase in the exposure. All models were adjusted for age, sex, BMI, education, smoking status, day 

of admission, average temperature at the day of admission and the Charlson comorbidity index.  

  

 Intensive care unit admissiona   

Air pollutant OR (95 %CI) P-value  

PM2.5    

2 days 1.03 (0.89 – 1.19) 0.70  

7 days 1.33 (0.76 – 2.33) 0.32  

Long-term 1.61 (0.95 – 2.73) 0.08  

PM10    

2 days 1.17 (0.65 – 2.10) 0.59  

7 days 1.23 (0.77 – 1.96) 0.39  

Long-term 1.68 (1.07 – 2.63) 
 

0.02  

BC    

2 days 1.57 (0.96 – 2.59) 0.07  

7 days 1.13 (0.56 – 2.27) 0.74  

Long-term 1.84 (1.17 – 2.89) 0.01  

NO2    

2 days 1.22 (0.74 – 2.04) 0.43  

7 days 1.77 (1.02 – 3.07) 0.04  

Long-term 1.88 (1.16 – 3.01) 0.01  

Blood BC load 1.20 (0.95 – 1.52) 0.11  



Table S12: Description of demographic and medical characteristics for the additional intensive care 

patients from the UZA sample (n = 45). 

 Mean (+- SD) Frequency (%) 

Demographic characteristics   

Age (years) 58.02 (+- 15.63)  

BMI 28.57 (6.08)  

Sex   

• Male  29 (64.4%) 
Ethnicity   

• Caucasian  32 (71.1%) 
• North-African  11 (24.4%) 
• Middle-Eastern  1 (2.2%) 
• Asian  0 (0%) 
• Black-African  1 (2.2%) 

Education   

• Low  9 (20.0%) 
• Medium  27 (60.0%) 
• High  9 (20.0%) 

Smoking status   

• Active  1 (2.2%) 
• Ex  22 (48.9%) 
• Never  22 (48.9%) 
• Passive  0 (0%) 

Medical characteristics   

CRP (mg/dL) 235.72 (+- 105.02)  

PaO2/FiO2 ratio 87.38 (+- 52.64)  

Neutrophils count 9.03 (+- 6.43)  

Eosinophils count 0.02 (+- 0.05)  

Monocytes count 0.69 (+- 1.38)  

Platelets count 236.56 (+- 88.03)  

Charlson comorbidity index   

• 0  25 (55.6%) 
• 1-2  15 (33.3%) 
• 3-4   4 (8.9%) 
• >=5  1 (2.2%) 

  



Table S13: Associations between average air pollutant exposure and black carbon load, and the 

duration of hospitalisation while adjusting for season of admission instead of date of admission. 

Exposure Estimate  95% CI p-value 

PM2.5   0.45 
2 days 0.36 -0.57 – 1.29 0.07 
7 days 3.38 -0.22 – 6.98 0.59 
Long-term -0.72 -3.32 – 1.87  
PM10   0.27 
2 days 2.07 -1.57 – 5.71 0.03 
7 days 3.24 0.31 – 6.16 0.26 
Long-term 1.09 -0.80 – 2.98  
BC   0.82 
2 days 0.35 -2.63 – 3.33 0.76 
7 days 0.71 -3.79 – 5.20 0.02 
Long-term 2.48 0.38 – 4.59  
NO2   0.82 
2 days 3.61 0.39 – 6.83 0.76 
7 days 3.39 0.30 – 6.48 0.02 
Long-term 3.35 0.91 – 5.79   
Blood BC 0.91 -0.81 – 2.63 0.30 

Estimates were determined using linear multiple regression models and are represented for an IQR 
increase in the exposure. All models were adjusted for age, sex, BMI, education, neighbourhood median 
income, smoking status, season of admission, average temperature at the day of admission,the 
Charlson comorbidity index, and estimated virus variant. 

 

  



Table S14: Odds Ratios for admission to the intensive care unit in association with average air 

pollutant exposure while adjusting for season of admission instead of date of admission. 

Estimates were determined using binomial logistic regression models and are represented for an IQR 

increase in the exposure. All models were adjusted for age, sex, BMI, education, smoking status, 

season of admission, average temperature at the day of admission and the Charlson comorbidity 

index.  

 

  

 Intensive care unit admissiona   

Air pollutant OR (95 %CI) P-value  

PM2.5    

2 days 0.92 (0.82 – 1.04) 0.20  

7 days 0.93 (0.60 – 1.44) 0.75  

Long-term 0.74 (0.53 – 1.01) 0.06  

PM10    

2 days 0.85 (0.53 – 1.34) 0.48  

7 days 1.05 (0.73 – 1.50) 0.80  

Long-term 1.21 (0.95 – 1.55) 0.13  

BC    

2 days 1.10 (0.78 -1.56) 0.58  

7 days 1.13 (0.66 – 1.94) 0.65  

Long-term 2.19 (1.58 – 3.02) <0.01  

NO2    

2 days 1.21 (0.80 – 1.82) 0.37  

7 days 1.84 (1.24 – 2.74) <0.01  

Long-term 2.49 (1.75 – 3.53) <0.01  

Blood BC load 1.33 (1.08 – 1.64) 0.01  



Figures 

 
Figure 1: Distribution of pollutant exposure per patient group (ICU versus non-ICU), for long-term 

exposure to NO2 (A), and for measured black carbon load in blood (B). Odds-ratios for ICU admission, 

vasopressor usage and risk of ventilation (C). The brackets represent the 95% confidence interval upper 

and lower limits. Interaction effect between average exposure to PM2.5 one week before admission 

and patient age (p-value interaction = 0.04) on the duration of hospitalisation (D). Sample size was 308 

for blood BC load measurements, since 20 blood samples were missing. Other analysis included all 328 

participants (n = 328). All model estimates are represented for an IQR increase in the exposure (long-

term PM10: +0.76 µg/m3, NO2: +4.13 µg/m3, BC: +0.15 µg/m3, Blood BC: +9.27x105 particles; short-term 

PM2.5: +0.56 µg/m3), and were adjusted for age, sex, BMI, education, smoking status, day of admission, 

average temperature at the day of admission, the Charlson comorbidity index and virus variant. 



 
 
Figure 2: Day-specific estimates for the association between (A) PM2.5, (B) PM10, (C) NO2, and (D) BC 
exposure and the duration of hospitalisation. The estimates are represented for a 5 µg/m3 increase in 
PM2.5, PM10 and NO2 exposure, and a 0.5 µg/m3 increase in BC exposure using distributed lag models. 
The brackets represent the 95% confidence interval upper and lower limits. All models were adjusted 
for age, sex, BMI, education, neighbourhood median income, smoking status, day of admission, 
average temperature at the day of admission, the Charlson comorbidity index, and estimated virus 
variant. 
  



 

 

Figure S1: Correlation between the modelled long-term black carbon exposure (µg/m3) and measured 
black carbon particles in blood (Spearman’s ρ = 0.48, p < 0.01). 
 

  



 

Figure S2: Visual representation of the average BC and PM2.5 exposures during 2019 in the 

study area. The dots represent residential locations of the study participants. The two hospital 

locations are indicated by the “H” markers.  

 


